1. State of the art
Axiom. n(t) =
Axiom. r(t) =
Axiom. n(t+1) = n(t) × r(t)
Axiom. n(t+1) = n(t)r(t)
Axiom. t = {{getSprintTime()}}
Theorem′ {{currentPrestige}}. n(t) $$\equiv$$ ∎
Lemma. n(t+1) = n(t) +
Use log scale
2. Contributions
placeholder
placeholder
3. Experimental results ({{player.sprintTimes.length+player.sprintSecondTimes.length}}/{{prestigeGoal.length+secondPrestigeGoal.length}})
Theorem | Runtime | Rerun |
{{$index}} | {{formatTime(sprint)}} | ··· |
Theorem′ | Runtime | Rerun |
{{$index}} | {{formatTime(sprint)}} | ··· |
3. Conclusion
4. Conclusion
Start next experiment
Start next experiment′
Retire
Save experiment Last: {{lastSave}}
Acknowledgements
Thanks to NoDownvotesPlease for the initial code, tangentialThinker (Derivative Clicker) for the save system, kawaritai (Swarm Simulator) for the progress bar, r/incremental_games/ for the comments, feedback and support.
Bibliography
[1] Initial code, http://jsfiddle.net/6a7yhyjv/
[2] AngularJS - Superheroic JavaScript MVW Framework, https://angularjs.org/
[3] decimal.js - An arbitrary-precision Decimal type for JavaScript, https://github.com/MikeMcl/decimal.js/
[4] MathJax - Beautiful math in all browsers. A JavaScript display engine for mathematics that works in all browsers. http://www.mathjax.org/
[5] Derivative Clicker, http://gzgreg.github.io/DerivativeClicker/
[6] Swarm Simulator, https://swarmsim.github.io
[7] /r/incremental_games/, an incremental games community, http://www.reddit.com/r/incremental_games/